The Challenges of Multi-dimensional Sentiment Analysis Across Languages

Date:

We outline a pilot study on multi-dimensional and multilingual sentiment analysis of social media content. We use parallel corpora of movie subtitles as a proxy for colloquial language in social media channels and a multilingual emotion lexicon for fine-grained sentiment analyses. Parallel data sets make it possible to study the preservation of sentiments and emotions in translation and our assessment reveals that the lexical approach shows great inter-language agreement. However, our manual evaluation also suggests that the use of purely lexical methods is limited and further studies are necessary to pinpoint the cross-lingual differences and to develop better sentiment classifiers.