The Validity of Lexicon-based Emotion Analysis in Interdisciplinary Research

Date:

Lexicon-based sentiment and emotion analysis methods are widely used particularly in applied Natural Language Processing (NLP) projects in fields such as computational social science and digital humanities. These lexicon-based methods have often been criticized for their lack of validation and accuracy – sometimes fairly. However, in this paper, we argue that lexicon-based methods work well particularly when moving up in granularity and show how useful lexicon-based methods can be for projects where neither qualitative analysis nor a machine learning-based approach is possible. Indeed, we argue that the measure of a lexicon's accuracy should be grounded in its usefulness.